33 0 obj (Electric potential) 21 0 obj endobj %���� "�z.ȼy��لip�ۦ�8 69�A\獏42F�l�SZ �{��9 �u���H��IJxd�5����D���C��@4b �;��­��Э1h�RJA��ccp�����6�;�JxQ g(� ��w���>�����evA0�v!0X�/��M 29 0 obj 13 0 obj 49 0 obj NG2����a�7�1��J�Xk�t676���&çeӒq{\^�S�#�!n���v!q(�Ak6No!G�l��,h�,�q�AF&N�� ��wT���a4�6HY��U�B�W���˳��i� Zg�\��ϖg��N�9 Equipotential surface2 2. (Introduction) << /S /GoTo /D (section*.2) >> 52 0 obj (Current density) 53 0 obj << /S /GoTo /D (section*.9) >> |�Al��k� 2_��B��fj��>d"�mJ���0=�x�eL�:j�QkIͫj(��Q0�� /���=�`��C��lk��d endobj endobj 17 0 obj 9 0 obj Lecture notes on classical electrodynamics Ming-Che Chang Department of Physics, National Taiwan Normal University, Taipei, Taiwan (Dated: October 12, 2020) Contents I. /Length 3496 }����&~So��f��1V��4����1t^��6r�T]U`��[email protected]� �R�ւȔ�BX�c��$���s�^?�����ǡ�o~2�4�����;�����. endobj /Length 4495 endobj endobj 56 0 obj 9 0 obj Lecture 4: Green's Functions for Planarly Layered Media (continued) Lecture 5: Integral Equations in Electromagnetics . endobj endobj << /S /GoTo /D (section*.1) >> << /S /GoTo /D (section*.5) >> 45 0 obj 1 0 obj 20 0 obj x��[Ys��~ׯ�#X%�sv�a�W��^�q�q�`�P�%�����=38R�^��!�=}|}�Hv���� ��_�}�ꌊ�Ų˫L�Lk[ ͳ���Y��T�)W:_��j��*_���٢�n�Y����Y�4�߯�e=�N~�|ddf��B*\eS�A����z���p�?�)W��+��J ��dS*-���Yu[N��7�r2�y��м���W���7�����b�����+�*���.Q���7k������W��j��|t?12�]�uY�N���U}�\���Ļ`��,l�_D�geSͿ�L�����f��_r�W�,d�x��E�`�)JT��h�}�^5ժq�?�@�d���_����x�� my��i�qQL�ʘ��D endobj (References) This set of “lecture notes” is designed to support my personal teaching ac-tivities at Duke University, in particular teaching its Physics 318/319 series (graduate level Classical Electrodynamics) using J. D. Jackson’s Classical Elec-trodynamics as a primary text. << /S /GoTo /D (section*.3) >> ��TQ�&[����r�ֹ��E�r 2 I thank my TAs Dr. Dana Levanony and Mr. Yaroslav Pollak for all their help and Prof. Amos Ori and Dr. Oded Kenneth for all they taught me. (Electrostatics) 20 0 obj (Force on charged surface) Quasi-static electromagnetic theory eventually gave rise to circuit theory and << /S /GoTo /D (section*.4) >> endobj (Coulomb's law) Earnshaw’s theorem3 D. Gauss’s law3 E. Boundary condition for E 4 1. (Electrostatics) (Some history) /Filter /FlateDecode Lecture 9: Study of EM Waves in Periodic Structures 44 0 obj endobj 49 0 obj endobj endobj �AbA��u�޾���ꦞf{��Ub���N�1����&��B�;�l�:�ښ����g a�����. 28 0 obj /Filter /FlateDecode << /S /GoTo /D (section*.3) >> << /S /GoTo /D (section*.7) >> 12 0 obj << /S /GoTo /D (section*.11) >> endobj ECE 604, Lecture 23 Mon, Mar 4, 2019 When the terms multiplied by j!above can be ignored, then electrodynamics can be replaced with static electromagnetics, which are much simpler. These notes are based on the course “Electrodynamics” given by Dr. M. J. Perr y in Cambridge in the Michælmas Term 1997. (Maxwell equations in vacuum) endobj (Earnshaw's theorem) endobj 64 0 obj 16 0 obj << /S /GoTo /D [50 0 R /Fit] >> (Contents) >> endobj endobj << /S /GoTo /D [58 0 R /Fit] >> 74 0 obj (References) << /S /GoTo /D (section*.1) >> 40 0 obj endobj endobj << /S /GoTo /D (section*.8) >> endobj endobj 28 0 obj << /S /GoTo /D (section*.6) >> The Maxwell equations 1 A. endobj endobj (Boundary condition for E) endobj 29 0 obj 36 0 obj (Electrostatic energy) 4 0 obj << /S /GoTo /D (section*.5) >> endobj Avron1 May 5, 2013 1Comments and typos welcome. 32 0 obj Lecture 7: Time Domain Method of Moments . 8 0 obj (Charge density) 37 0 obj * 7v���}5���(~���ge�A� �t���5k>�u��� ��B�5��������`�IJ�GV��z*���C�Zf���w�KX(~AR�@S���^"`qVs�U)��0�)n"�#���-�Mڲ ,����S2~��ȏ�xz�����V�ﰁ�@u�����{��~��8����i8S5��| tE�-^A��B�ͯ����?m�����ҿ~�~`��P��o֥L����[email protected]�Z���f�?�u�T�c e��;��O�&Ēa�������mdIy�c�t�n?=�� JM�Q�Ki�gzx�*�驏�Q8�|�Hj�Q��GqL�:��ΦX���x*P � << /S /GoTo /D (section*.11) >> 48 0 obj 44 0 obj 25 0 obj 24 0 obj stream These typeset notes have been produced mainly for my own benefit but seem to be officially supported. electrodynamics lecture notes pdf preparing the properties of the nature of each part consists of science, generally considered to read your responsibility to classical mathematics. endobj (Gauss's law) endobj 40 0 obj << /S /GoTo /D (section*.10) >> However, the notes may be useful to students Charge and current1 1. 48 0 obj endobj 17 0 obj x��;]��6����{1��b�M"[y�'c����M. ��+��AL$T���� ɻە�…Ӹɛk�R����>k���o���x>�X�å��Cn$��7�+�B���s�a&�T7a��ao���Y!z"�I� $�/S�